
12/19/22, 5:35 PM evaluate() PostgreSQL Function for Evaluating Stored Expressions (Part 2) | by Christoph Bussler | Dec, 2022 | Medium

https://chbussler.medium.com/evaluate-postgresql-function-for-evaluating-stored-expressions-part-2-6a3ca364e46a 1/4

evaluate() PostgreSQL Function for Evaluating
Stored Expressions (Part 2)
Reusing existing function for correctness check

Syntactic correctness of stored expressions
The evaluate() function is a useful approach for using stored expressions in WHERE clauses of

SQL queries, as outlined in Part 1: evaluate() PostgreSQL Function for Evaluating Stored
Expressions (Part 1).

In Part 1, in section “Improvement”, I highlighted the fact that expressions are stored in
a varchar column (since there is no data type like Expression available in PostgreSQL for

this use case). One implication is that a stored expression might not be syntactically correct:
the database would not prevent storing an incorrect expression in a varchar column.

This blog describes one approach to checking the syntactic correctness of stored
expressions in a varchar column at the time of insertion or update. This ensures that

expressions, when used in queries, do not cause failures because of syntactic incorrectness
during SQL query execution.

Checking correctness of stored expressions

Insert and update trigger

Every time an expression is either stored or updated a check for its syntactic correctness is
required. The simplest way to react on each insert or update is to create an insert or update
trigger on the table that contains the varchar column holding the expressions. This trigger

calls a function that performs the syntactic correctness check.

In the example, this would be an insert and update trigger on table customer calling a

function check_expression() . This function (introduced later in this blog) implements the

syntactic correctness check of the expression that is being inserted or updated:

CREATE TRIGGER check_expression

 BEFORE INSERT OR UPDATE

https://medium.com/@chbussler/evaluate-postgresql-function-for-evaluating-stored-expressions-1846a19943e9

12/19/22, 5:35 PM evaluate() PostgreSQL Function for Evaluating Stored Expressions (Part 2) | by Christoph Bussler | Dec, 2022 | Medium

https://chbussler.medium.com/evaluate-postgresql-function-for-evaluating-stored-expressions-part-2-6a3ca364e46a 2/4

 ON customer

 FOR EACH ROW
EXECUTE FUNCTION check_expression();

check_expression() function

Reviewing the evaluate() function shows that its implementation uses a expression passed

as parameter to create a SELECT statement and runs the statement to evaluate an expression

against a JSON object passed in as a another parameter.

This property — the expression being used in a SQL query and executed — can be utilized
in check_expression() . The function check_expression() can apply the new or updated

expression and evaluate it against the empty JSON object {} . If the outcome of this

execution is TRUE or FALSE then it is known that the inserted or updated expression is

syntactically valid. If an exception is raised, the expression is syntactically incorrect.

A possible implementation of check_expression() is as follows:

CREATE OR REPLACE FUNCTION check_expression()
 RETURNS TRIGGER

 LANGUAGE plpgsql

AS
$$

DECLARE
 v_expression_valid BOOLEAN;

 v_expression VARCHAR;

 v_empty_object JSONB;
 v_exception_text VARCHAR;

 v_exception_hint VARCHAR;
 v_message VARCHAR;

 v_hint VARCHAR;

BEGIN

 v_expression = NEW.interest;
 v_empty_object = '{}';

 BEGIN
 v_expression_valid = evaluate(

 v_empty_object, v_expression);

 EXCEPTION
 WHEN OTHERS THEN

 GET STACKED DIAGNOSTICS

12/19/22, 5:35 PM evaluate() PostgreSQL Function for Evaluating Stored Expressions (Part 2) | by Christoph Bussler | Dec, 2022 | Medium

https://chbussler.medium.com/evaluate-postgresql-function-for-evaluating-stored-expressions-part-2-6a3ca364e46a 3/4

 v_exception_text = MESSAGE_TEXT,

 v_exception_hint = PG_EXCEPTION_HINT;
 v_message = 'Expression is incorrect: ' ||

 v_expression;
 v_hint = v_exception_text || '; ' || v_exception_hint;

 RAISE EXCEPTION '%', v_message USING HINT = v_hint;

 END;
 RETURN NEW;

END;
$$;

When the inserted or updated expression is syntactically correct, then the transaction
succeeds.

If the expression has a syntactic error, an exception is raised indicating the problem. An
example is as follows (formatted by me to fit your screen):

[P0001] ERROR: Expression is incorrect:

 (object -> 'price')::int < 100000 and object >> 'color' = 'silver'
[2022-12-17 06:25:34] Hint: operator does not exist:

 jsonb >> unknown; No operator matches the given name and
 argument types. You might need to add explicit type casts.

Key here is that the original exception information produced by PostgreSQL is passed
through without modification so that the original information is available for debugging.

Improvements
The function check_expression() refers to the column storing expressions as interest since

in the example of the customer table the column holding the expressions was named this

way.

Since it is possible that several tables in a schema are referring to expressions, this would
mean that all columns holding expressions would have to be named interest in order to

reuse the check_expression() function for all the tables in the corresponding triggers. While

possible, a more neutral name like expression might be better suited.

12/19/22, 5:35 PM evaluate() PostgreSQL Function for Evaluating Stored Expressions (Part 2) | by Christoph Bussler | Dec, 2022 | Medium

https://chbussler.medium.com/evaluate-postgresql-function-for-evaluating-stored-expressions-part-2-6a3ca364e46a 4/4

Summary
Using the evaluate() function itself for checking the correctness of stored expressions not

only reuses existing code but also removes the need for an alternative implementation,
especially invoking parsing functionality of arbitrarily complex expressions.

